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J. Phys. A: Math. Gen. 18 (1985) L697-L701. Printed in Great Britain 

LETTER TO THE EDITOR 

Supersymmetry and the Dirac equation for a central 
Coulomb field 

C V Sukumar 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 18 June 1985 

Abstract. It is shown that the methods of supersymmetric quantum mechanics can be used 
to obtain the complete energy spectrum and eigenfunctions of the Dirac equation for an 
attractive Coulomb potential. 

The Dirac equation for the electron in an attractive central Coulomb field leads to 
the energy eigenvalue spectrum [ 13 shown schematically in figure 1. The conventional 
spectroscopic classification of the levels in the non-relativistic limit is indicated along- 
side the levels. When the spectrum is unscrambled in this fashion, it is clear that the 
arrangement of the pair of levels for a fixed value of the total spin J resembles a 
‘supersymmetric’ pairing in which the ‘fermionic’ ladder has a spectrum identical with 
the ‘bosonic’ ladder except for the missing groundstate [2-5]. The level scheme in 
figure 1 corresponds to a juxtaposition of one such ‘supersymmetric’ pair of ladders 
for each possible value of J. It is the purpose of this letter to show that the eigenvalue 
spectrum and the eigenfunctions of the Dirac equation may indeed be obtained using 
the methods of supersymmetric quantum mechanics [2]. 

Adopting the notation used in Bjorken and Drell [ 11 and defining the parameters 

y = ze’/ ch a , = m + E  a , = m - E  (1) 

the coupled radial equations satisfied by the two-component wavefunction ( Gk, Fk) 
may be written in the matrix form 

) +: (-; -3 (3 = (:’ 3 (3 (2) 

in which k is an eigenvalue of the opefator -(U L +  1) with the allowed values k = 
*l, *2, * 3 , .  . . and satisfies (kl = J + $  In the representation in which equation (2) is 
written, J and k are good quantum numbers. Gk is the ‘large’ component in the 
non-relativistic limit. The radial functions Gk and Fk must be multiplied by appropriate 
two-component angular eigenfunctions to make up the full four-component solutions 
of the Dirac equation [l]. Figure 1 shows that when we compare the two ladders of 
levels for a fixed value of J,  a pair of degenerate levels corresponds to the same value 
of J but opposite values of k except for the lowest state of the pair of ladders when 
only the negative value of k corresponds to an eigenstate. We now show how this 
ladder structure may be related to the pairing of states characteristic of supersymmetric 
theories. 

0 ( dG!dr dFk/dr  
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Figure 1. Schematic eigenvalue spectrum of the Dirac equation for the central potential 
U ( T )  = -v ir .  .J is the total spin and k = *(.J+$). See text for explanation of the quantum 
numbers. 

The matrix multiplying l / r  in equation (2) may be diagonalised using the matrix 
D and its inverse where 

(3 )  

Multiplication of the matrix differential equation from the left by D and introduction 
of the new variable p = Er leads to 

( k /  s + m /  E ) F  = (d/dp + s / p  - y /  s)d 
( k / s  - m /  E)d = (-d/dp + s / p  - y / s ) F  

where 

(4) 

These equations are similar to the relation between the two components of the eigen- 
functions of a ‘supersymmetric’ Hamiltonian [2] 

%‘={a, a’}, Q = (  ’) 0 A i  o )  
A ,  0 ’ 

and 

A,’ = (*d/dp + s /p  - y / S ) .  (7) 

The nilpotent operator Q commutes with 2 and therefore corresponds to a conserved 
charge of this system. Q and Q’ induce transformations between the ‘bosonic’ sector 
represented by F and the ‘fermionic’ sector represented by 6. Equation (4) may be 
viewed as a representation of such a transformation. In supersymmetric quantum 
mechanics the ‘fermionic’ and ‘bosonic’ components have identical spectra except for 
the ground state of the ‘bosonic’ sector which is annihilated by the charge operator Q. 

In other words the eigenvalue equations for and d 
A , ’ A ; F = ( y 2 / s 2 + 1 - m 2 / E 2 ) F  

A; Aid = ( y 2 / s 2 +  1 - m’/ E 2 ) 6  
show that every eigenvalue of A l A ,  is also an eigenvalue of AiA,’ except when 
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A;F = 0. The condition A;F = 0 leads to the ground-state eigenfunction 

F - ( O ) =  p s  exp(-yp/s) (9) 

and the ground-state energy eigenvalue given by 

( E ! & “ ) ~  = m’/(1 + y 2 / s 2 ) .  

AiA: has no normalisable eigenstate at this energy. All the otter state? of AiA, and_ 
AiA; are paired and the eigenfunctions are linked in the form F - A:G and G - A i F  
as indicated in equation (4). We now show how the ground state of AiA; may be 
obtained. 

The uncoupled second-order differential equations for 6 and 6 
[ d 2 / d p 2 + 2 y / p - s ( s - l ) / p 2 + 1 - m 2 / E 2 ] F = 0  (11) 

[d2/dp2+ 2y/p - s(  s + l ) / p 2  + 1 - m’/ E 2 ] 6  = 0 (12) 

show that equation (12) may be obtained from equation (11) by the replacement 
s +  s +  1 .  This suggests that equation (12) may be written in the form 

ATAT6 = [ y 2 / ( s  + 1 ) 2 +  1 - m 2 / E 2 ] 6  
with 

A: =[*d/dp+(s+ l ) / p -  y / ( s +  I)]. 

6 has a ‘supersymmetric’ partner fi which satisfies 

A;A:G = [ y 2 / ( s +  112+ 1 - m’/~’]fi .  (15) 
Just as F and 6 may be viewed as the components of the eigenfunctions of a 
‘supersymmetric’ Hamiltonian so also 6 and fi may be viewed as the components of 
the eigenfunctions of ?nother ‘supersymmetric’ Hamiltonian. The spectrum of fi is 
identical with that of G except for a missing state at the energy corresponding to the 
ground-state eigenvalue of ATAT. By the same reasoning as for A i A i  we may then 
infer that the ground state of ATA; has the eigenfunction 

6‘o)=exp[-yp/(s+1)] (16) 

( E “  c )  2 =m2/[1+y2/(s+1)’]. 
with a ground-state energy eigenvalue which satisfies 

(17) 
The excited states of A:A; satisfy equations similar to equation (4). Explicitly 

[ k / ( s  + 1) + m / E ] 6  = ATfi 

[ k / ( s + l ) - m / E ] f i = A ; 6 .  
(18) 

Having obtained the ground state 6“’ we can now use the ‘supersymmetric’ pairing 
of 5 and 6 to obtain the first excited state of A,’A, in the form 

(19) 
where the suffixes carry obvious meaning. 

This procedure may be repeated to find the ground state of a hierarchy of operators 
AlA;, A:A;, . . . with each iteration corresponding to a shift of s by one in the 
definition of the A* operators. This hierarchy corresponds to the Hamiltonian hierarchy 
discussed in [5]. From the ground state properties of the members of this hierarchy 
all the excited-state eigenfunctions and eigenvalues of A:A, can be obtained. The 

F(1) - AlG(0) @) = E(0) G 
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allowed energy eigenvalues of equation (4) are 

E:')= m/[ l+y2/ (s+n)2] ' /2  n=0,1 ,2 ,  . . .  (20) 

and the eigenfunctions may be written in the form 

F ( n )  - (A,'A:, . . . , A;- ' )ps fn  exp[-yp/(s+n)] 

with 

A: = *d /dp+(s+  n ) / p  - y / ( s +  n). 

Although 6 and F satisfy uncoupled second-order differential equations, the normali- 
sation of one of them determines that of the other as is required by equation (4). The 
solutions of equation (2) can be written, after adding the suffix n, in the form 

When n = 0, d has no normalisable eigenstate at the energy E$'). We treat the two 
possible values of k for this energy separately. When k = -sm/ E$'' equation (4) 
requires that we must choose 

h - k ,  P )  = p S  exp(-w/s)  d ( - k , p ) = O  (24) 

to obtain normalisable solutions for Fk and Gk. However, when k = + s m / E g '  equation 
(4) requires that we must choose 

R + k ,  P )  = P S  exP(-Yp/s), 
(25) 

d(+k, p )  = p-' exp(+yp/s) x2' exp(-2yx/s) dx. 

Since d is not normalisable, the positive value of k does not lead to normalisable 
solutions for Fk and Gk. 

The expression for the spectrum, equation (20), is an even function of k. A fixed 
lkl leads to a doublet of states corresponding to k = +lkl and k = -1kl degenerate in 
energy for all positive integral values of n. For n = 0, only the negative value of k leads 
to normalisable Fk and Gk and therefore the state with n = 0 is a singlet. This explains 
the ladder structure of the spectrum for a fixed value of I kl = J +; and opposite values 
of k. 

The avove analysis considered a fixed k with the corresponding s = ( k 2  - Y ~ ) ' ' ~ .  
However in equations (20)-(22) s enters only as a parameter. Hence we can obtain 
the complete spectrum and the eigenfunctions of equation (2) for all values of J = I kl - ; 
by the above procedure. The complete spectrum is given by 

E l ; ; =  m / { l +  y 2 / [ n + ( k 2 -  Y * ) ' / ~ ] ~ } ' / ~  n=0 ,1 ,2 ,  . . .  k = 1,2, .  . . (26) 

and equation (21) for the eigenfunctions F ( n )  is valid for different values of s ( k ) .  The 
principal quantum number N is related to n and k by the relation N = n + Ikl. 

In contrast to the usual treatment [6-91 of the Dirac equation, we have shown that 
the 'supersymmetric' pairing of F and d enables a simple and elegant treatment of 
the Dirac equation for a central Coulomb field. The interaction of a charged particle 
with the vacuum fluctuations of the quantised radiation field leads to departures from 
the Coulomb potential. When the field deviates from a Coulomb field, the transformed 
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states and 6 no longer belong to a ‘supersymmetric’ pair and the eigenvalue spectrum 
loses the ladder structure characteristic of supersymmetric pairing. Therefore we may 
say that the Lamb shift, which is an effect due to vacuum fluctuations, is related to 
the breaking of the ‘supersymmetry’ that connects ? and 6. 

I would like to thank G Stedman, R Baldock and I J R Aitchison for stimulating 
discussions. 
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